
Using the Serial Ports in Visual C++

Copyright © 2005 by Barry B. Brey

The serial communications ports are COM1–COM8, but most computers only have
COM1 and COM2 installed. Some have a single communication port (COM1). Here,
the Windows API is discussed and used to operate the COM ports.

 The serial ports are accessed through any version of Windows and Visual C++ by
using a few system application interface (API) functions. An example of a short C++
function that accesses the serial ports is listed in Example 1. The function is called
WriteComPort and it contains two parameters. The first parameter is the port as in
COM1, COM2, etc and the second parameter is the character to be sent through the port.
A return true indicates that the character was sent and a return false indicates that a
problem exists. To use the function to send the letter A through the COM1 port call it
with a WriteComPort(“COM1”, “A”). This function is written to send only a single byte
through the serial COM port, but could be modified to send strings. To send a 00H (no
other number can be sent this way) through COM2 use WriteComPort(“COM2”, 0x00).
Notice that the COM port is set to 9600 Baud, but this is easily changed by changing the
CBR_9600 to another acceptable value. See Table 1 for the allowed Baud rates.

EXAMPLE 1

bool WriteComPort(CString PortSpecifier, CString data)
{
 DCB dcb;
 DWORD byteswritten;

 HANDLE hPort = CreateFile(

 PortSpecifier,
 GENERIC_WRITE,
 0,
 NULL,
 OPEN_EXISTING,
 0,
 NULL
);

 if (!GetCommState(hPort,&dcb))
 return false;

 dcb.BaudRate = CBR_9600; //9600 Baud
 dcb.ByteSize = 8; //8 data bits
 dcb.Parity = NOPARITY; //no parity
 dcb.StopBits = ONESTOPBIT; //1 stop

 if (!SetCommState(hPort,&dcb))
 return false;

 bool retVal = WriteFile(hPort,data,1,&byteswritten,NULL);
 CloseHandle(hPort); //close the handle
 return retVal;
}

 The CreateFile structure creates a handle to the COM ports that can be used to
write data to the port. After getting and changing the state of the port to meet the Baud
rate requirements, the WriteFile function sends data to the port. The parameters used
with the WriteFile function are the file handle (hPort) the data to be written as a string,
the number of bytes to write(1 in this example), and a place to store the number of bytes
actually written to the port.

Table 1 Allowable Baud rates for the COM ports.

Keyword Speed in bits per second
CBR_110 110
CBR_300 300
CBR_600 600
CBR_1200 1200
CBR_2400 2400
CBR_4800 4800
CBR_9600 9600
CBR_14400 14400
CBR_19200 19200
CBR_38400 38400
CBR_56000 56000
CBR_57600 57600
CBR_115200 115200
CBR_128000 128000
CBR_256000 256000

 Receiving data through the COM port is a little more challenging because errors
occur more frequently than with transmission. There are also many types of errors that
can be detected that often should be reported to the user. Example 2 illustrates a C++
function that is used to read a character from the serial port called ReadByte. The
ReadByte function either returns the character read from the port or an error code of
0x100 is the port could not be opened or 0x101 is the receiver detected an error. If data
are not received, this function will hang because no timeouts were set.

EXAMPLE 2

int ReadByte(CString PortSpecifier)
{
 DCB dcb;
 int retVal;
 BYTE Byte;
 DWORD dwBytesTransferred;
 DWORD dwCommModemStatus;

 HANDLE hPort = CreateFile(

 PortSpecifier,
 GENERIC_READ,
 0,
 NULL,
 OPEN_EXISTING,
 0,
 NULL
);

 if (!GetCommState(hPort,&dcb))
 return 0x100;

 dcb.BaudRate = CBR_9600; //9600 Baud
 dcb.ByteSize = 8; //8 data bits
 dcb.Parity = NOPARITY; //no parity
 dcb.StopBits = ONESTOPBIT; //1 stop

 if (!SetCommState(hPort,&dcb))
 return 0x100;

 SetCommMask (hPort, EV_RXCHAR | EV_ERR); //receive character event
 WaitCommEvent (hPort, &dwCommModemStatus, 0); //wait for character

 if (dwCommModemStatus & EV_RXCHAR)
 ReadFile (hPort, &Byte, 1, &dwBytesTransferred, 0); //read 1
 else if (dwCommModemStatus & EV_ERR)
 retVal = 0x101;
 retVal = Byte;
 CloseHandle(hPort);
 return retVal;
}

